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Abstract

Smart contracts are distributed self-enforcing programs which execute on top of

blockchain networks. They have the potential to revolutionize many industries and

have already been adopted for applications such as distributed finance and

crowdfunding. Because smart contracts are immutable once they are deployed, it

is important to identify and eliminate code vulnerabilities in smart contracts sys-

tematically. In this work, we propose sFuzz2.0, a storage-access-pattern guided

adaptive fuzzer based on sFuzz. sFuzz2.0 is motivated by the fact that certain

vulnerabilities only manifest in the presence of certain function call sequences

(as well as particular arguments). Given that there are exponentially many function

call sequences, sFuzz randomly generates sequences without guidance. As a result,

the probability of discovering those vulnerabilities is negligible. sFuzz2.0 tackles

the problem with two approaches, that is, by generating function call sequences

that trigger different storage-access patterns passively (i.e., by prioritizing seeds

which cover new patterns) or actively (i.e., by actively seeking out different

patterns). The experiment results suggest that the passive strategy outperforms

sFuzz by achieving better code coverage (i.e., 37.53%) and discovering more

vulnerabilities (i.e., 20.49%).
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1 | INTRODUCTION

In recent years, both academia and industry have ignited a strong interest in smart contracts. A smart contract is a computer program which

automatically executes, controls or documents legally relevant events and actions according to the terms of a contract or an agreement.1 Built on

top of a blockchain network, smart contracts allow traceable and irreversible transactions without the need of a trusted third party. They are

believed to have the potential to reshape many industries, including legal agreements, finance, and supply chain. In fact, there have already been

many real-world applications based on smart contracts, for example, the de facto smart contract platform Ethereum has more than 1.2 million

daily transactions for a wide range of applications.

A smart contract is a piece of code written by programmers, and like any programmer-written code, a smart contract may contain code

vulnerabilities. Because smart contracts manage valuable digital assets, the vulnerabilities may cause huge amounts of economic losses. Worse

yet, because storage variables in smart contracts are stored on the blockchain network, once a vulnerable contract is deployed, it is almost impos-

sible to patch the contract. For instance, a vulnerability in a smart contract called TheDAO was exploited by an attacker and, as a result, around
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four million ethers (i.e., Ethereum's digital currency, equivalent to about 50 million dollars at that time) were stolen.2 After the hack, the Ethereum

community conducted a hard fork, which is the only way to roll back the transactions and prevent the same attack from occurring, and caused

much controversy.

The importance of systematically testing smart contracts has since been well recognized. Many testing engines have been

developed,3–11 including both fuzzing and symbolic approaches. For instance, Oyente4 is designed to test each function in a smart contract

separately based on symbolic execution,6 that is, generating test cases by constraint solving each path in one function. ContractFuzzer5 instead

tests a smart contract by generating random inputs for each function in the contract. The symbolic execution tools4,6,11–14 suffer from high

constraint solving cost and potential false positives, while the fuzzing tools have low false positive rate but have limited deep code covering

capabilities.

To improve the code covering capabilities and find out more vulnerabilities, we proposed sFuzz,3 an efficient adaptive efficient fuzzers for

Solidity smart contracts. Inspired by AFL,15,16 sFuzz3 applies feedback-guided fuzzing algorithm. Though AFL is proven to be efficient, its

effectiveness reduces significantly in the presence of strict branching conditions. Thus, in addition to applying the seeds selecting strategy in AFL

(i.e., select seeds which cover new branches), we apply an adaptive strategy which prioritizes the seeds according to a quantitative measure

(i.e., distance) on how far a seed is from covering any just-missed branch. Specifically, we select seeds triggering smaller branch distance in each

iteration until the corresponding branch is covered. Our empirical study3 shows that the adaptive strategy is useful in increasing the coverage of

the generated test suite, and sFuzz is on average more than two orders of magnitude faster than ContractFuzzer, covers more branches, and

reveals many more vulnerabilities.

Though sFuzz3 is effective and efficient. One technical challenge we must address is that sFuzz may be ineffective in generating specific

function call sequences because sFuzz3 randomly generates sequences. It is known that certain code vulnerabilities only manifest in specific

function call sequences.4,8 Consider, for instance, the contract shown in Figure 1, which implements a simple crowdfunding contract. To start a

new crowdfunding, the owner, which is set in the base contract owned, should first call function setUp to open the crowdfunding and specify

when the crowdfunding will be closed by calling function checkðÞ. Users can buy tokens after the crowdfunding is opened by calling function

buyTokenðÞ with the ethers (i.e., msg.value) they want to invest. Users can withdraw their funding through function refund only after the owner

checks and closes the crowdfunding. The require statement at Line 31 must be satisfied for successful refunding; otherwise, the function will be

rolled back and the user will not receive their fund. However, a gasless send vulnerability17 can be triggered if Line 34 is executed. That is, function

sendðÞ calls the fallback function of msg:sender and forwards 2300 units as the gas limit. If the fallback function costs more than the gas limit, it

F IGURE 1 A motivation example.

2 of 20 WANG ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2557 by T
ianjin U

niversity, W
iley O

nline L
ibrary on [28/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



rolls back and sendðÞ returns false. Such a returned value should be properly handled, yet it is not the case in this contract, which constitutes a

gasless send vulnerability, as the user would not be refunded. The malicious deployer can take advantage of the investigators' misunderstanding

(i.e., the statement sendðÞ transfers ethers correctly while the fallback of the receiver contract is complex) to make the ethers invested into the

contract's account cannot be withdrawn, and after end_date (at Line 38), the deployer can transfer the balance to the owner to receive the

wrongly invested ethers (at Line 39).

To expose this vulnerability, the functions must be called in a particular sequence with proper parameter values, that is, setUpð0Þ, checkðÞ,
buyTokenðÞ, and refundðÞ so that the require condition at Line 31 are satisfied.

sFuzz generates function call sequences randomly, which means that such vulnerabilities are identified with fairly low probability. For a

contract with k functions, the probability of generating a particular sequence of length m is 1
km. The problem is further complicated as, in

addition to the call sequence, specific parameters are often required to trigger the vulnerability. So given that there are exponentially many

function call sequences with arguments, one problem is how to selectively generate specific function call sequences which are likely to expose

vulnerabilities. Existing approaches address this problem in two ways. One is to limit the length of the call sequence to a small number, for

example, no more than 2 in the case of Oyente,4 and 3 in the case of sCompile.6 The other (e.g., sFuzz3) is to leave it to chances,3,5,7 that is,

randomly generating sequences (with a larger bound on the length). While the former surely misses vulnerabilities which manifest only with long

sequences (such as the one in Figure 1), the latter identifies those vulnerabilities with fairly low probability. A quick experiment shows

ContractFuzzer, Oyente, and sFuzz (with a time budget of 2min) all fail to identify the vulnerability in the contract shown in Figure 1. To address

the above-mentioned issues, we propose a fuzzer for smart contracts called sFuzz2.0, which extends sFuzz by selectively generating function

call sequences. Our idea is inspired by the recent development on testing concurrent programs.18 That is, we propose to evaluate the relevance

of a particular call sequence in terms of how storage variables are accessed. Note that storage variables in smart contracts are persistent states

which are stored in the blockchain network and are always associated with smart contract vulnerabilities (because they are used to store

balances). Intuitively, our approach aims to trigger as many different storage-access patterns (SAPs) as possible, which in turn improves

sFuzz2.0's chances of discovering vulnerabilities by improving the branch coverage. We study two different strategies to trigger different

patterns, either actively (i.e., actively seeking out different patterns) or passively (i.e., randomly mutate call sequences and prioritize sequences

which exhibit new patterns).

Our evaluation results on a set of 4603 smart contracts suggest that the passive strategy outperforms sFuzz, that is, covering 37.53% more

branches and discovering 20.49% more vulnerabilities. In summary, we make the following contributions.

1. We propose to guide smart contract fuzzing based on a code coverage criteria with SAPs.

2. We develop two strategies, passive fuzzing and active fuzzing, to maximize SAPs.

3. We implement sFuzz2.0 (available at sFuzz2.019) on top of sFuzz and show its effectiveness with a large set of real-world smart contracts.

The remainder of the paper is organized as follows. We define our problem in Section 2 and illustrate how sFuzz2.0 works step by step to

address the problem. We review algorithms of sFuzz in Section 3 and introduce our extension in Section 4. Our approach is evaluated in Section 5.

We discuss related work in Section 6 and conclude in Section 7.

2 | PRELIMINARY

In this section, we review relevant background and define our problem.

2.1 | Problem definition

A smart contract S typically has a number of instance variables, a constructor and multiple functions, some of which are public. It can be equiva-

lently viewed in the form of a control flow graph (CFG) S¼ ðN, i,EÞ where N is a finite set of control locations in the program; i�N is the initial

control location, that is, the start of the contract; and E⊆N�C�N is a set of labeled edges, each of which is of the form ðn,c,n0Þ where c is either

a condition (for conditional branches like if-then-else or while-loops) or a command (i.e., an assignment).

Test cases. A test case for S is a pair ðσ0,ΣÞ where σ0 is the configuration of the blockchain network and Σ is a sequence of transactions

(i.e., function calls). The configuration σ0 contains all information on the setup of the network which is relevant to the execution of the smart

contract. Formally, σ0 is a tuple ðb,ts,SA,SBÞ where b is the current block number, ts is the current block timestamp, SA is a set of the addresses of

the smart contracts (including the smart contract under test as well as other invoked contracts), and SB is a function which assigns an initial
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balance to each address. Σ¼hm0ð p0�!Þ,m1ð p1�!Þ,…i is a sequence of public function calls of the smart contract under test, each of which has an

optional sequence of concrete input parameters pi
!. Note that m0 must be a call of the constructor.

Given any nontrivial smart contract, there could be an enormous number of test cases. One essential problem to be addressed by a fuzzer is

thus how to selectively generate test cases. This is often achieved by defining certain equivalent classes of test cases and generating test cases to

cover as many classes as possible. For instance, in classic symbolic execution, test cases that cover the same program path are considered to be in

the same equivalent class and the goal is to cover as many paths as possible (by generating one test case for each path if possible). In AFL, test

cases that cover the same set of edges (assuming there is no hashing collision for simplicity) are considered equivalent. In sFuzz, test cases that

cover the same edges are further distinguished by how far they are from covering certain uncovered branches (through a distance function3). In

this work, we propose to further distinguish test cases based on SAPs, as they often lead to different behaviors.

The task of fuzzing a smart contract is thus to generate a set of test cases (a.k.a. test suite) according to certain testing criteria. The

execution of a test case t traverses through a path in the CFG S, which visits a set of nodes and edges. For simplicity, we assume that

one test execution covers one unique path (i.e., there is no nondeterminism). Furthermore, a trace generated by t is a sequence of pairs of

the form hðσ0,n0Þ,ðσ1,n1Þ,…i where ðn0,n1,…Þ is the sequence of nodes visited by t and σi is the configuration at the time of visiting node ni

for all i.

Code coverage. Ideally, we aim to generate a test suite which reveals all vulnerabilities in the contract. However, as we do not know where

the vulnerabilities are, we must instead aim to achieve something more measurable. In this work, our answer is to focus on code coverage, in par-

ticular, branch coverage. We remark that our approach can be extended to support different coverage at the cost of additional code instrumenta-

tion. A branch in S is covered by a test suite if and only if there is a test case t in the suite that visits the edge at least once. The branch coverage

of a test suite is calculated as the percentage of the covered branches over the total number of branches. Note that identifying the total number

of (feasible) branches statically in a smart contract is often infeasible for two reasons. First, some branches might be infeasible (i.e., there does not

exist any test case that visits the branch) and knowing whether a branch is feasible or not is a hard problem. Second, EVM has a stack-based

implementation which makes identifying all potentially feasible branches hard. Our problem is thus reduced to generate a test suite which maximizes

the number of covered branches. To achieve maximum code coverage, one way is to generate a large test suite (e.g., through random test genera-

tion). However, in practice, we often have limited resources (in terms of time or the number of computer processes), and thus, our problem is

refined as “to generate a test suite which maximizes the number of covered branches as efficiently as possible.” Our solution to the problem is

feedback-guided adaptive fuzzing.

Fuzzing is one of the most popular methods to create test cases.20 A feedback-guided fuzzing system (a.k.a. fuzzer) takes a program under

test and an initial test suite as input, monitors the execution of the test cases to obtain certain feedback, generates new test cases based on the

existing ones in certain ways, and then repeats the process until a stopping criteria is satisfied. We present details of our feedback-guided adap-

tive fuzzing process in Section 3.

Oracles. The remaining problem is then how to tell whether a test case reveals a vulnerability. In this work, we adopt a set of oracles from pre-

vious approaches.21,22 We remark identifying and defining smart contract vulnerabilities is a research problem orthogonal to ours. In the following,

we briefly introduce the vulnerabilities that sFuzz are capable of detecting.

Gasless Send vulnerability. In Solidity, sendðÞ is a special transfer function that returns whether the transfer is successfully executed. By default,

the gas limit of sendðÞ is 2300 units. The current transaction should stop and rollback immediately if sendðÞ returns false. The Gasless Send vulner-

ability is due to incorrect handling of the return value of function sendðÞ. We check Gasless Send vulnerability by detecting function calls with

2300 units as gas limit.

Exception Disorder vulnerability. In Solidity, the exception will propagate to the caller until low-level calls (e.g., callðÞ), after that no side effect

will be rolled back, which makes the caller contract be unaware of the errors if the return value is not properly handled. We check whether the

exception is propagated to the root transaction to ensure all potential problematic transactions are reverted.

Reentrancy vulnerability. Function could be reentrant through fallback function. However, some developer may unaware of this feature (e.g.,

updated critical state before low-level calls), which may be exploited by malicious attackers (e.g., the DAO attack23). We detect reentrancy

vulnerability by checking whether the function is called more than once in the current stack and if this reentrant function call is sending ether.

Timestamp Dependency vulnerability. In Solidity, timestamp can be manipulated by miners, and thus, it is unsafe to use timestamp as part of

the condition that determines critical operations. We detect timestamp dependency by checking if the function invokes TIMESTAMP opcode and

sends ethers at the same time.

Block Number Dependency vulnerability. Similar to timestamp, the block number could also be manipulated by miners. We detect block number

dependency by checking if the function invokes BLOCKNUMBER and sends ethers at the same time.

Dangerous Delegate Call vulnerability. Function delegatecallðÞ is a special call that the code deployed at the target contract is executed on the

storage of the caller contract. Allowing arbitrary code executing on the storage of caller contract may be exploited. For example, the first round

of parity wallet24 is attributed to dangerous delegate call. We detect dangerous delegate call vulnerability by checking invocation of the

DELEGATECALL opcode.

4 of 20 WANG ET AL.
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Freezing Ether vulnerability. The ethers in the contract will be frozen when the contract relies merely on delegate call to transfer to the callee

and the callee is self-destructed. The second round of parity wallet24 is attributed to freezing ether. We detect freezing ether vulnerability by

checking if the contract can receive ether and invoke delegate call during execution while there is no other ways to transfer ethers.

Integer Overflow/Underflow vulnerability. The arithmetic of operation should be checked to prevent integer overflow and underflow;

otherwise, they may produce unexpected result and affect state of the contract. We detect integer bugs by comparing the execution result and

the expected result.

2.2 | SAPs

Different from the existing fuzzers, sFuzz2.0 is designed based on observation that whether a certain branch (and consequently vulnerability) is

covered is often correlated with how storage variables (i.e., permanent status stored on the blockchain, such as account balances) are accessed.

For instance, consider two call sequences:

π1 ¼hsetUpð0Þ,checkðÞ, refundðÞ,buyTokenðÞi,
π2 ¼hsetUpð0Þ,checkðÞ,buyTokenðÞ, refundðÞi,

which differ only by the order of the last two function calls. Assume that msg:value for refundðÞ is greater than 0 and block:number is greater

than 0. π1 and π2 cover the same branches, that is, the branches at Lines 9, 17, 20, and 26. AFL and sFuzz thus consider them the same and

randomly drop one of them. A closer look however reveals that fuzzing π2 (by mutating the value of parameter msg:value for function buyToken)

is more likely to cover the branch at Line 31 and trigger the vulnerability at Line 34. Intuitively, this is because π2 differs from π1 on how

fund½msg:sender� is accessed, that is, buyToken writes fund½msg:sender� at Line 27 and then refund reads fund½msg:sender� at Line 31, and as a

result, Line 31 reads a value greater than 100, and thus, the require condition is satisfied. That is, π2 and π1 are different in terms of storage

variables access patterns.

We argue that the order of storage access matters. In this example, function buyToken writes fund½msg:sender� (at Line 27) and function

refund reads fund½msg:sender� as part of the condition (at Line 31), the order of the two storage variable access events is critical to trigger the bug.

If the write access (at Line 27) is executed before read (at Line 31), the read access can obtain different values through changing the msg:value

and there is a higher chance to cover the branch (at Line 31) if we perform further value mutation.

We thus introduce the concept of SAPs and use it to optimize test case generating through fuzzing. We remark that SAP is inspired by the

work in Wang et al18 and Park et al,25 which shows memory-access patterns are often associated with concurrent bugs. Intuitively, an SAP cap-

tures how storage variables are accessed by multiple functions in a trace. An SAP consists of a sequence of storage-access events. A storage-

access event is a record of storage access by functions, which is defined as follows:

Definition 1 Storage-access event. A storage-access event is a tuple of the form ðf,x,RÞ or ðf,x,WÞ where f is a function that

reads/writes the storage variable, x is a storage variable, and R/W represents reading/writing access, respectively.

Intuitively, ðf,x,RÞ is the event of function f reads variable x and ðf,x,WÞ is the event of function f writes variable x. With the definition of

storage-access event, the SAP is defined as:

Definition 2 SAP. A SAP is a consecutive sequence of two to four storage-access events, as shown in Table 1.

The 17 patterns intuitively enumerates all possible ways of accessing one or two storage variables by different functions. We remark that

more complicated patterns (which involve more than four functions or two storage variables) can be separated into a combination of multiple pat-

terns in this table. For example, a len-3 P4 pattern is formed by one len-2 P1 Pattern and another len-2 P2 pattern by merging the two identical

events ðf,x,RÞ into one. For the detail of how len-2 patterns form len-3 and len-4 patterns, please refer to Algorithm 5. Given a test case π, we

can systematically obtain the set of SAPs covered by t, denoted as patternsðtÞ. Note that the same read/write sequences on a contract variable x

by different functions are considered different patterns.

Our goal is to cover a variety of different SAPs during fuzzing process, which we believe would contribute to improving branch coverage dur-

ing fuzzing. This is evidenced by the example above as well as the empirical study results in Section 5. In other words, we propose an SAP-

Coverage to complement existing coverage such as branch coverage. Given a test suite, computing its SAP-Coverage is highly nontrivial as we

must know how many SAPs are feasible in general, which in turn requires us to identify infeasible program paths. Fortunately, for the purpose of

fuzzing, all we need is to try generating new SAPs based on a given set of seed test cases.
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2.3 | An illustrative example

In the following, we illustrate how our approach works through the example shown in Figure 1.

Let us first examine how sFuzz3 works. sFuzz's overall design follows that of AFL, that is, it keeps mutating the test inputs

(i.e., parameter values and system configuration values), and selects those test cases which cover new branches or obtain a closer distance

to those just-missed branches as seeds for further mutation. The strategy of sFuzz is shown to be effective in obtaining high branch cover-

age and revealing vulnerabilities, as shown in Nguyen et al.3 However, sFuzz fails to satisfy the branch conditions at Line 31 after fuzzing

for 2 min. We observe that it is because sFuzz initially generates the call sequence hrefund,buyToken,check,setUpi (according to the order of

the functions in ABI) and fails to generate the call sequence h setUp,check,buyToken, refund i. Note that the require condition

fund½msg:sender�>100 (at Line 12) is satisfied if and only if functions are invoked in the above order and msg:value for function buyToken is set to

be greater than 100.

sFuzz2.0 extends sFuzz by using SAP-Coverage to guide the fuzzing process. Given the contract in Figure 1, sFuzz2.0 generates the

same call sequence hcheck,setUp, refund,buyTokeni initially. After the test case is executed, sFuzz2.0 collects branch information related to

branch coverage (i.e., for each branch, whether it is covered and if not, how far is the branch from being covered) and extracts SAPs from the test

case. Next, sFuzz2.0 evolves the test suite, by not only applying mutations on the function parameters but also mutations that aim to cover

new SAP, that is, one that writes fund½msg:sender� before reading it. Note that there may be many storage-access events in a single function.

Because a function is executed without interruption in Ethereum, the order of the event inside a function is fixed. Thus, we mutate the

function call sequence to cover new SAPs. sFuzz2.0 supports two strategies for triggering new SAP. The passive strategy randomly adds/

removes/swaps function calls, for example, functions buyToken and refund are swapped to generate a new seed hcheck,setUp,buyToken, refundi,
which covers new SAPs and is kept for further mutation. Subsequently, function check and setUp are swapped, resulting in the vulnerability-

triggering function sequence hsetUp,check,buyToken, refundi that cover the key SAP (i.e., E10E12 in Figure 2B), and the seed is kept for

further mutation. Finally, when msg:value is mutated to be greater than 100, the condition at Line 31 is satisfied and the vulnerability is revealed.

Note that keeping the test case which triggered the new SAP is the key to covering the new branch and triggering the corresponding vulnerability.

sFuzz may also generate the above sequence, but sFuzz does not do further argument mutation on this sequence, and thus misses the chance to

reveal the vulnerability. The active strategy first identifies potential storage-access events through dynamic analysis, for example, recording

the arguments and related configuration values. For instance, when refund reads (at Line 31) and buyToken writes (at Line 27), the value of

end (for setup) and msg:value (for buyToken) are recorded. Afterwards, sFuzz2.0 selectively introduces/removes a function call in the sequence

in order to trigger new patterns. In this example, sFuzz2.0 generates the call sequence hcheck,setUp,buyToken, refundi and detects the

vulnerability in 7 s.

TABLE 1 Seventeen storage-access patterns.

ID Storage-access pattern

P1 ðf1,x,RÞ,ðf2,x,WÞ
P2 ðf1,x,WÞ,ðf2,x,RÞ
P3 ðf1,x,WÞ,ðf2,x,WÞ
P4 ðf1,x,RÞ,ðf2,x,WÞ,ðf3,x,RÞ
P5 ðf1,x,WÞ,ðf2,x,WÞ,ðf3,x,RÞ
P6 ðf1,x,WÞ,ðf2,x,RÞ,ðf3,x,WÞ
P7 ðf1,x,RÞ,ðf2,x,WÞ,ðf3,x,WÞ
P8 ðf1,x,WÞ,ðf2,x,WÞ,ðf3,x,WÞ
P9 ðf1,x,WÞ,ðf2,x,WÞ,ðf3,y,WÞ,ðf4,y,WÞ
P10 ðf1,x,WÞ,ðf2,y,WÞ,ðf3,x,WÞ,ðf4,y,WÞ
P11 ðf1,x,WÞ,ðf2,y,WÞ,ðf3,y,WÞ,ðf4,x,WÞ
P12 ðf1,x,WÞ,ðf2,x,RÞ,ðf3,y,RÞ,ðf4,y,WÞ
P13 ðf1,x,WÞ,ðf2,y,RÞ,ðf3,x,RÞ,ðf4,y,WÞ
P14 ðf1,x,RÞ,ðf2,x,WÞ,ðf3,y,WÞ,ðf4,y,RÞ
P15 ðf1,x,RÞ,ðf2,y,WÞ,ðf3,x,WÞ,ðf4,y,RÞ
P16 ðf1,x,RÞ,ðf2,y,WÞ,ðf3,y,RÞ,ðf4,x,WÞ
P17 ðf1,x,WÞ,ðf2,y,RÞ,ðf3,y,WÞ,ðf4,x,RÞ
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3 | sFUZZ FUZZING ALGORITHM

In this section, we briefly review the algorithm in sFuzz.3 Note that sFuzz and sFuzz2.0 are both grey-box feedback-guided fuzzing, they

share the same main Algorithm 1, and sFuzz2.0 differs sFuzz on fitness criteria and mutation operators.

Grey-box feedback-guided fuzzing. As shown in Algorithm 1, sFuzz3 employs a genetic algorithm to evolve the test suite in order to cover as

many branches as possible. Variable suite is the test suite to be generated and is initially set to be empty. Variable seeds is a set of seed test cases,

based on which new test cases are generated and is initiated with function initPopulationðÞ. For each branch br in the contract, minðbrÞ maintains

the smallest distance from covering this branch, which is initialized to be þ∞ for each branch.

The loop from Lines 6–9 iteratively evolves the test suite and stops only when it times out. Function fitToSurviveðseeds,suiteÞ executes each
seed (i.e., test case) in seeds, collects branch information, and returns a set of selected seeds which are likely to generate new test cases that

cover new branches (Line 7). Function crossoverMutationðÞ generates new test cases based on the selected seeds through crossover and

mutation (Line 8).

Generating initial population. Function initPopulationðÞ generates test cases (in the form of a bit vector) as the initial seeds. A test case consists

of both the blockchain configuration and a sequence of function calls. Blockchain configuration is a set of unsigned integers and is initialized with

random values. A function contains two parts, that is, the function selector and a set of parameters. Recall that the function selector is the first

4 bytes of the function signature hash value. The parameter contains fixed-length type or dynamic-length type values. For dynamic-length type

values, a length in the range of ½0,255� is generated first and then a random value of the given length is generated. For fixed-length type values, a

random value of the given length is generated.

The fitness function. A fitness function is used to select seeds which are likely to cover new branches through crossover or mutation. It selects

those promising seeds from the input seeds. Variable newSeeds is initially an empty set of test cases. Seeds which are “fit to survive” are inserted

into this set.

F IGURE 2 Examples of storage-access patterns extracted from test case hsetUp,check,buyToken, refundi.

WANG ET AL. 7 of 20

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2557 by T
ianjin U

niversity, W
iley O

nline L
ibrary on [28/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



sFuzz applies two fitness criteria, one is adopted from AFL15,16 which considers seeds covers new branches as newSeeds. Another is a

lightweight objective function where the objective is shrinking the distance from covering just-missed branches. For a branch br labeled with

condition c, which can be any of false,a¼¼ b,a!¼ b,a> ¼ b,a> b,a< ¼ b,a< b. The distanceðbrÞ is defined as follows.

distðseed,brÞ¼ K if c is false or a!¼ b,

ja�bjþK Otherwise,

�

where K is a constant which represents the minimum distance. Intuitively, distanceðt,brnÞ is defined such that the closer the branch is from being

covered, the smaller the resultant value is. In sFuzz2.0, the K is set to be 1 as the same in sFuzz.

With the above, Algorithm 2 shows the details on how sFuzz selects seeds. It examines every test case in seeds. At Line 3, the selected seed is

executed to identify the covered branches and SAPs. If the seed covers a new branch, it is added into newSeeds and suite (Line 5). Then, we update

the minimum distance of each seed with just-missed branches according to sFuzz3 (Lines 7–12). For each just-missed branch br, we retain the test

case which achieves the minimal distance as a seed. Note that the third fitness criteria (Lines 13–17) is only used in sFuzz2.0, which we will

introduce later in Section 4.

Crossover and mutation. Recall that a seed consists of a network configuration and a sequence of function calls with concrete arguments.

crossoverMutationðÞ generates new test cases through crossover and mutation. Crossover works by “mixing” two seeds to generate new test

cases. Mutation works by modifying either the network configuration, the function parameters, or the function call sequence.

8 of 20 WANG ET AL.
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Algorithm 3 shows the details of mutation. For each given seed, sFuzz first applies the AFL mutation operators one by one, which

mutate on the bit/byte level. For those values which have the fixed-length type (e.g., uint32), the mutation operators are systematically

applied to generate new values. Note that the value of type address is handled separately by a special operator as there are special format

requirements. Each address has 32 bytes, in which the first 12bytes contain the balance of the address and the last 20 bytes contain

the address value. Those values that have dynamic-sized types (e.g., array) consist of length and content. To mutate the value of those types,

sFuzz generates a length between 0 and 255 first and then pads (prunes) the missing (extra) bits if the new length is more (less) than the

current one. To mutate the call sequence, sFuzz randomly adds/removes a function call or swap two randomly selected function calls to change

the call sequence.

4 | SAP-COVERAGE-GUIDED FUZZING

In this section, we introduce our extension to sFuzz. At top level, sFuzz2.0 and sFuzz share Algorithm 1, and sFuzz2.0 complements sFuzz

with SAPs. In particular, we propose two algorithms to guide the fuzzing process. The first algorithm is the passive strategy, that is, we extend the

fuzzing algorithm in sFuzz with a seed selection procedure and select test cases which exhibit new SAP as seeds. We also propose an active

strategy, which actively mutates a seed test case in a way that maximizes the likelihood of generating a new SAP.

4.1 | Passive fuzzing

Passive fuzzing is a simple approach which aims to minimize the computational overhead.

To effectively generate coverage-improving function sequence orders, we selects those seeds which cover any new SAP (i.e., one that is not

in visited patterns). Given a seed that contains a sequence of storage-access events, we can systematically extract the SAPs as follows. sFuzz2.0

instruments two instructions, that is, SLOAD and SSTORE, in EVM for collecting storage-access events. SLOAD reads a value v at a position p and

SSTORE write a value v to a position p in storage. Given the test case, for each execution of SLOAD or SSTORE, we record the relevant information

in the form of

EID : ðselector,p,AÞ,

where EID is a global storage-access event id; selector is the first four bytes of the Keccack-256 hash of the function signature, representing the

function to be called; p is the current storage-access position which acts as a variable identifier; and A is R (and W) if the opcode is SLOAD (and

SSTORE). As a result, for each test case, we obtain a sequence of indexed storage-access events.

For the contract shown in Figure 1, given the test case that consists of the call sequence

hsetUpð0Þ,checkðÞ,buyTokenðÞ, refundðÞi,

the sequence of storage-access events are shown in Figure 2A on the left. E1 is the event of the first function setUp reads the value of contract

variable isSetup at Line 9, which contains a SLOAD opcode. Before the opcode is executed, the position of variable openDate is pushed onto the

call stack, and the selector of the function is keccak(“setUp(uint256)”). Hereafter, for simplicity, we use the function name as the selector (when

there is no ambiguity).

For every Es : ðf,x,AÞ in the sequence, sFuzz2.0 aims to identify a Length 2 pattern starting from Eid and search through the subsequent

events until a matching event according to the pattern is identified (if there is any). For instance, if the event Es is a read access, a P1 pattern is

matched; otherwise, we aim to match one P2 pattern. Note that the first event and the second event must access the same variable x. For exam-

ple, given the trace shown in Figure 2A, for event E9 : ðbuyToken, fund,RÞ, event E13 : ðrefund, fund,WÞ is the first event that writes to the variable

balance. These two events thus form a P1 pattern.

For each pair of patterns of Length 2, we check whether they can form a new pattern (of Length 3 or 4). If the second event in the first pat-

tern is the same as the first event in the second pattern, a Length 3 pattern is formed; otherwise, a Length 4 pattern is formed. For the example in

Figure 2B, the Length 2 pattern composed of E4 and E7 and that composed of E7 and E11 form a Length 3 pattern. Two Length 2 patterns

(i.e., one composed of E2 and E6 and the other composed of E9 and E13) form a Length 4 pattern. The Length 4 patterns are omitted in the table

for the sake of space.

With the above, Algorithm 2 shows the details on how sFuzz2.0 selects seeds. For each seed in seeds, in addition to the branch fitness and

distance fitness (Lines 4–12), if the seed covers a new pattern, it is also added into newSeeds (Lines 13–17). Furthermore, we call

WANG ET AL. 9 of 20
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updatePatternsðseedÞ (Line 18) to update the visited patterns. Note that function updateRWðseedÞ is called only when active fuzzing is chosen, as

we explain later.

Mutation operators. In the passive strategy, we adopt all mutation operators from sFuzz as previously shown in Algorithm 3, with the hope

that altering the call sequence (i.e., randomly swap, add, and remove functions) would alter the order of storage-access events and thus generate

SAPs. Note that there is no guarantee that the altered call sequence will generate new SAPs. However, thanks to the seed selection algorithm

(i.e., Algorithm 2), whenever a mutated call sequence covers a new SAP, it will be selected to generate new test cases. If it happens that the new

test cases are able to obtain smaller distances, they will be further mutated to cover the branches gradually. Although this strategy is simple in

nature, it has the advantage of introducing little overhead, which is fairly important for fuzzing.

4.2 | Active fuzzing

To complement the passive strategy, we further propose an active fuzzing strategy, which mutates a call sequence in specific ways so that it is

likely to cover new patterns. The active fuzzing strategy is shown in Algorithm 4. Different from the passive fuzzing algorithm, the active fuzzing

algorithm actively attempts to increase SAP-Coverage by mutating the seeds in specific ways.

Identifying potential patterns. We start with identifying potential SAP at Line 2. That is, by knowing how storage variables are accessed by

each function, we can avoid those call sequences which are unlikely to generate uncovered SAPs. Recall that a function updateRW is called in

Algorithm 2 when active fuzzing is applied. Its goal is to maintain two mappings read and write, from storage variables to functions. Intuitively,

given a storage variable x, read½x� (and write½x�) is the set of functions which read (and write) x. We remark the two mappings could be identified

through static analysis, although we would suffer from false positives. In this work, we instead do it through dynamic analysis. Based on the infor-

mation, we can then determine where to insert or remove a function call in the given test case so that the resultant call sequence is likely to cover

a new SAP.

Algorithm 5 shows the details on how potential patterns are identified. The idea is to enumerate all possible combinations of one or two stor-

age variables, and functions based on the read and write mapping, according to the pattern template in Table 1. Note that Algorithm 5 can be fur-

ther optimized so that all combinations are enumerated only updated for those storage variables and functions that are updated in the latest call

of updateRW, that is, the potential patterns are identified incrementally.

Once we identify the potential patterns (Line 2), we calculate uncoveredPatterns (Line 3) by removing those SAPs which have already been

covered. Afterwards, for each seed, we first apply AFL mutation operators to generate new seeds. For each function call fiðxiÞ in the given

sequence, let pe be a prefix of the function sequence ending with fiðxiÞ. The active mutation process (Lines 8 to 13) iterates on each pattern pt in

uncoveredPatterns to actively mutate seed to generate new test cases which are likely to cover the target pattern pt. Function nextðpe,ptÞ returns
an event ðf,x,AÞ in pt, that is, given a function sequence pe, we match the event sequence prefix of pt and return the event after the prefix in pt if

it exists. Lines 10 to 12 add/remove/swap a function call to generate new seeds which attempt to cover a longer prefix of pt.

10 of 20 WANG ET AL.
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For instance, assume pattern pt is

ðf1,x,WÞ,ðf2,x,RÞ,ðf3,x,WÞ:

Given pe¼ðf1,x,RÞ,ðf2,x,WÞ, the prefix of pt that is matched is ðf1,x,WÞ, nextðpe,ptÞ is the event after the pattern prefix, which is ðf2,x,RÞ. As a
result, function f2 with concrete parameters is inserted after the prefix at Line 10, aiming to cover the longer pattern prefix ðf1,x,WÞ,ðf2,x,RÞ.
Similarly, we remove a function call or swap two function calls at Lines 11 and 12 if it is likely to extend the matched prefix of the pattern. Note

that there is no guarantee that f2 writes variable x even if the parameter is set to be the same with which f2 wrote to x in a previous test case,

because the context might have changed. One complication that is worth discussing here is regarding those dynamic-sized storage variables, such

as arrays and mappings. In Ethereum, these variables are “flattened” and stored in a huge map which maps positions on the global storage to

values. Given a position, it is in general difficult to determine which source-level variable it belongs to. In our approach, we determine whether a

position p stores the value of a dynamic or fixed-sized variable by the magnitude of p. Contract variables are stored continuously starting from

Position 0 and the fixed-sized variables occupy fixed numbers of slots. For instance, one slot (i.e., 32 bytes) is allocated for a variable of type uint.

For dynamic-sized variables like mappings and dynamic arrays, due to their unpredictable size, they take 32bytes (one slot) to store meta-

information (e.g., length of an array), and the elements they contain are stored starting at a different storage slot which is computed using a

Keccak-256 hash. Thus, by calculating the number of total slots occupied by fixed-sized variables and the meta-information of dynamic-sized vari-

ables, we are able to identify all those fixed-sized variable values systematically. For the remaining positions on the global storage which are

accessed by the contract, we are aware that they are associated with certain dynamic-sized variables, although it is highly nontrivial to know

exactly which one. To reduce the number of patterns and speed up the fuzzing process, for patterns regarding those dynamic-sized variables, we

only sample a threshold number of positions on the accessed global storage (i.e., 1/10 or an upper bound of 200 which is smaller). This is justified

as covering a pattern that accesses the same array at a different index from a covered pattern is perhaps not as valuable as covering a pattern on

different variables.

WANG ET AL. 11 of 20
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5 | IMPLEMENTATION AND EVALUATION

sFuzz2.0 is implemented in C++ and has been integrated into sFuzz and is publicly available.19 It is built on the Ethereum client aleth, which is

used to simulate the Solidity execution environment and record storage-access events at the bytecode level. sFuzz2.0 extends the sFuzz frame-

work3 with both the passive and the active strategy. sFuzz2.0 supports all types of vulnerabilities defined in Nguyen et al.3

To evaluate the effectiveness of sFuzz2.0, we designed a set of experiments to answer the following research questions (RQ):

• RQ1: Does sFuzz2.0 achieve higher code coverage than the state-of-the-art approach?

• RQ2: Is sFuzz2.0 effective in achieving high SAP-Coverage?

• RQ3: Is the overhead of the active strategy in sFuzz2.0 justified and is the passive and active strategy complementary?

• RQ4: Is sFuzz2.0 able to find new vulnerabilities?

Experiment setup. To evaluate the smart contract testing tools, several works have proposed various benchmark datasets. SmartBugs is the

first smart contract benchmark. It contains hundreds of vulnerable contracts and collects de-duplicated contracts from Etherscan. SolidiFI26 con-

structs a buggy dataset by injecting thousands of distinct bugs in 50 contracts. Ren et al27 complement the above benchmarks with vulnerable

contracts crawled from the CVE dataset. In the following, we focus on a selected subset of contracts from the unlabeled real-world contracts

(UR) dataset since it is more comprehensive. Our experiment subjects are gathered from the existing study. Ren et al27 collect 45,622 contracts

from the Ethereum blockchain that have Solidity source code available in Etherscan. Due to the limited computing resources that we have, we

randomly select 4603 (around 10% of the dataset) of them as our test subjects. The LoC of these contracts ranges from hundreds to thousands,

we illustrate the distribution of LoC of these contracts in Figure 3. As can be seen, most of the contracts (about 90%) are relatively complicated

(i.e., with LoC greater than 100).

For a baseline comparison, we compare the two strategies of sFuzz2.0, that is, sFuzz2.0passive and sFuzz2.0active, with sFuzz and Contra-

ctFuzzer.5 Note that there are additional recent testing engines for smart contracts, such as Clairvoyance12 and Echidna.7,28 They cannot be com-

pared as Clairvoyance is not available and Echidna requires user-defined assertions, which are nontrivial to generate automatically or even

manually (e.g., it is not clear what the assertion should be for the TheDAO vulnerability2). All experiment results reported below are obtained on a

machine with two octa-core CPUs Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz and 94GB memory, running Ubuntu 18.04.2 LTS. The timeout is set

to be 10 minutes for fuzzing each contract. To minimize the impact of randomness, each run is repeated three times independently, and we report

the average result.

RQ1: Does sFuzz2.0 achieve higher branch coverage than the state-of-the-art approach?

To answer this question, we systematically apply sFuzz2.0, ContractFuzzer, and sFuzz to every contract for 10 min and measure the num-

ber of distinct branches covered. Figure 4 illustrates the distribution of branch number covered by ContractFuzzer, sFuzz, and two strategy of

sFuzz2.0. The vertical axis is the number of branches covered. It can be seen the two strategies of sFuzz2.0 outperform ContractFuzzer

(about 2� branches covered) and sFuzz (about 1.3� branches covered) in terms of branch coverage. The passive strategy performs slightly better

than the active strategy.

We summarizes the comparison between sFuzz2.0passive versus sFuzz, sFuzz2.0active versus sFuzz, and sFuzz2.0passive versus

sFuzz2.0active on every single contact in Figure 5. The vertical axis is the difference between the number of branches covered by the two

approaches, that is, the number of branches covered by the first approach (e.g., sFuzz2.0passive for Figure 5A) minus that of the second approach

F IGURE 3 LoC distribution of benchmark contracts.
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(e.g., sFuzz for Figure 5A). Each point on the horizontal axis represents a smart contract. The contracts are sorted by the difference. Thus, the

more points above the 0 line, the better the first approach is.

First, both sFuzz2.0passive and sFuzz2.0active outperform sFuzz, that is, sFuzz2.0passive covers more branches than sFuzz on more than

four fifths of the contracts (i.e., 3662 out of 4603) and sFuzz2.0active covers more branches than sFuzz on 3348 out of the 4603 contracts. In

contrast, sFuzz covers more branches on 87 contracts than sFuzz2.0passive and 208 contracts than sFuzz2.0active. Our conjecture on why

sFuzz2.0 is not universally better than sFuzz is that (1) while covering more SAPs improves branch coverage in general, it may not always be

the case; (2) sFuzz2.0 spends time on code instrumentation (for collecting storage-access events and identifying SAPs), which makes sFuzz2.0

slightly slower than sFuzz.

Second, comparing sFuzz2.0passive and sFuzz2.0active, as shown in Figure 5C, we observe that sFuzz2.0passive and sFuzz2.0active comple-

ment each other. That is, sFuzz2.0active covers more branches in 907 contracts whereas sFuzz2.0passive covers more branches in 1763 con-

tracts. We conjecture that the reason is that while active fuzzing is more active in triggering new SAPs, it suffers from some significant overhead

as well. Note that we put this conjecture under further examination in RQ3.

We further conduct an experiment to measure the throughput, that is, the number of test cases generated and executed per second, of each

method. Please note that we use the unified experiment setup in RQ1. The average throughput of sFuzz, sFuzz2.0passive, sFuzz2.0active are

786.95, 778.74, and 726.48, respectively. Overall, the efficiency of sFuzz2.0 is around 7.7% lower than sFuzz. sFuzz2.0 passive, which is only

0.99% less efficient than sFuzz, is more efficient than sFuzz2.0active. The overhead of sFuzz 2.0 is mainly caused by the calculation of SAP. Con-

sidering the branch coverage increment that sFuzz2.0 achieves, we believe this overhead is worthwhile and acceptable.

RQ2: Is sFuzz2.0 effective in obtaining high SAP-Coverage?

F IGURE 4 Branch coverage of ContractFuzzer, sFuzz, and sFuzz2.0 in 10 min.

F IGURE 5 Comparison on the number of covered branches.
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Next, we evaluate whether sFuzz2.0 achieves its goal of covering more SAPs. Because it is infeasible to obtain the total number of patterns,

we report the unique patterns covered during the fuzzing process. That is, we systematically measure the number of unique SAPs covered on

each contract by sFuzz, sFuzz2.0active, and sFuzz2.0passive. As discussed above, given the difficulty of distinguishing patterns regarding

dynamic-sized variables, we focus on patterns on fixed-sized variables only.

The result is summarized in Figure 7. Similarly, for each pair of approaches, the vertical axis is the number of patterns covered by the first

approach minus that of the second approach. The comparison between sFuzz and sFuzz2.0 is as expected, that is, both sFuzz2.0passive and

sFuzz2.0active cover more SAPs than sFuzz on almost all the contracts. The comparison between sFuzz2.0passive and sFuzz2.0active, as shown

in Figure 6C, again reveals a mixed story, that is, sFuzz2.0passive and sFuzz2.0active both outperform each other on a large number of contracts.

We conjecture that this is because although sFuzz2.0active is likely to achieve a higher SAP-Coverage if the same number of test cases are exe-

cuted, sFuzz2.0passive may still be superior in some contracts as it suffers from less overhead, which is critical for fuzzing algorithms.3,15,16 In the

next part, we put this conjecture under test in RQ3 and then propose a way of combining sFuzz2.0passive and sFuzz2.0active.

RQ3: Is the overhead of sFuzz2.0active justified and is the passive and active strategy complementary?

To answer RQ3, we show how the number of covered branches and covered patterns changes with time. If our conjecture that

sFuzz2.0active is slower but more effective in covering SAPs is correct, we expect sFuzz2.0active to catch up sFuzz2.0passive given sufficient

time. In other words, though suffered from more overhead, compared to passive, sFuzz2.0active is supposed to cover more SAPs in the long run

if enough potential patterns are identified. In this experiment, we randomly sample 1000 contracts and set the fuzzing timeout to be 100min. The

trend over time in terms of branch coverage is shown in Figure 7A, where the y axis is the average number of covered branches of all contracts.

Correspondingly, Figure 7B shows the trend of SAP-Coverage. Note that we similarly only count patterns regarding static-sized variables.

Considering the branch coverage the results show that sFuzz2.0passive consistently outperforms sFuzz2.0active, and both sFuzz2.0passive

and sFuzz2.0active consistently and significantly outperform sFuzz. Furthermore, with a time limit of 1 h, the gap between sFuzz2.0passive and

sFuzz2.0active shows no sign of shrinking. Considering the SAP-Coverage, the passive strategy and the active strategy lead alternatively. Finally,

after around 2700 s, the active strategy is overtaken by the passive strategy. We further evaluate the success rate of the active strategy, that is,

the percentage of times that the to-be-covered SAP is actually covered after the mutation. The result is that the success rate is on average around

50%, which we believe is reasonably good considering complications such as infeasible program paths. A further investigation shows that for over

F IGURE 6 Comparison on the number of covered SAPs.

F IGURE 7 Branch/pattern coverage over time.
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half of the contracts, the total number of potential patterns identified in Algorithm 5 in sFuzz2.0active is less than or equal to the total number of

covered patterns in sFuzz2.0active. Our conclusion is thus that sFuzz2.0active fails to cover more SAPs for many contracts because it is limited

by the already-seen storage-access events collected by updateRW. In other words, if some storage-access events have never been triggered,

sFuzz2.0active has no idea that they exist and thus would not be able to cover the corresponding SAPs. On the other hand, because

sFuzz2.0passive mutates randomly, it is more likely to trigger new storage-access events.

The result suggests sFuzz2.0passive and sFuzz2.0active naturally complement each other. That is, sFuzz2.0passive can be applied initially to

trigger many storage-access events (and cover those easy to cover SAPs), whereas sFuzz2.0active can be applied to cover hard-to-cover SAPs

based on those storage-access events identified by sFuzz2.0passive. To evaluate our hypothesis, we proposed a strategy which combines

sFuzz2.0passive and sFuzz2.0active sequentially, that is, for each contract, given a timeout of 10min, we first apply sFuzz2.0passive for 8min and

then switch to sFuzz2.0active for 2min. The results are summarized in Figure 8A,B. Compared with sFuzz2.0passive, the combined version covers

65 more branches in total. We believe that the combined strategy can potentially perform better if more time is available. As shown in the

Figure 7A,B, after 4800 s (i.e., the point when switching the strategy from passive to active), the combine strategy starts to cover more branches

and more patterns than the passive strategy, and the gap between the two strategies shows an increasing trend. The results suggest that the

active strategy complements the passive strategy and the combined strategy shows the best performance given a longer fuzzing time budget.

RQ4: Is sFuzz2.0 able to find new vulnerabilities?

To answer RQ4, we adopt the nine kinds of oracles used in sFuzz and run sFuzz2.0 (with the passive, active, and combined strategy as dis-

cussed above) on all contracts to detect vulnerabilities. Note that the exact same vulnerability detectors are adopted from sFuzz.

The result is shown in Table 2, where the first column is the type of vulnerability, and the following column shows the total number of vulner-

abilities found by five approaches in the five subcolumns. sFuzz2.0 finds more vulnerabilities than sFuzz in all categories. For all categories,

F IGURE 8 Comparison between combine and passive strategy.

TABLE 2 Vulnerabilities: sFuzz2.0 versus sFuzz and ContractFuzzer.

Vulnerability Type

#Vulnerabilities

ContractFuzzer sFuzz sFuzz2.0passive sFuzz2.0active sFuzz2.0combine

Gasless Send 1066 1323 1556 1468 1555

Dangerous Delegate Call 2 6 7 7 7

Freezing Ether 2 6 7 7 7

Reentrancy 0 31 37 28 37

Exception Disorder 0 73 75 63 75

Integer Overflow 8 10 17 14 17

Integer Underflow 1 3 5 6 6

Timestamp Dependency 454 483 622 584 620

Block Number Dependency 73 90 114 105 114

Total 1606 2025 2440 2282 2438
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passive, active, and combined strategies of sFuzz2.0 find more or equal number of vulnerable contracts compared to sFuzz and ContractFuzzer.

The passive and the combined strategies obtain the highest pattern coverage and branch coverage; thus, they reveal the maximum number of vul-

nerabilities (i.e., 315 new vulnerabilities reported comparing to sFuzz) as expected. Note that the active strategy also outperforms sFuzz. Detailed

investigations show that certain function sequences and argument values are needed to trigger those new vulnerabilities, and the SAP-Coverage

criteria is critical for fuzzing algorithms to detect such vulnerable contracts.

To illustrate how sFuzz2.0's approach helps to discover vulnerabilities, we present the following vulnerable contract which is detected by

sFuzz2.0 but not sFuzz and ContractFuzzer. The simplified example in Figure 9 contains a dangerous delegate call at Line 18. The statement

delegateCall passes the context of the msg:sender and storage variables to the addr contract. An attacker can take advantage of this by first calling

updateðÞ to set deprecated to be true and pointing addr to the address of the attacker contract in Figure 10; then, the attacker can call checkðÞ to
invoke a delegate call to the endðÞ function in Attacker contract. Because the delegateCall will execute the code on the caller contract, the owner

of Ohni is set to the address of the attacker contract. Note that this vulnerability in Figure 9 is only found by sFuzz2.0 because it requires a spe-

cific sequence of function calls with specific parameters. To trigger the vulnerability, the checkðÞ function should be called when the state variable

deprecated is true. To satisfy this condition, the update function should be called previously where the msg:sender should be equal to owner and

the parameter depr should be true. sFuzz and ContractFuzzer failed to generate the required function sequence; therefore, they failed to detect

the vulnerability.

Another vulnerable contract exposed by sFuzz2.0 but not the other tools is simplified and shown in Figure 11. This contract contains a

Timestamp Dependency vulnerability from Lines 20 to 21. Function purchase will transfer to the caller (at Line 21) if a day has passed since the

lastPurchase. Because the timestamp can be manipulated by miners, it is unsafe to use the timestamp as part of the condition that determines

transfer operations. As a result, in this vulnerable contract, the transfer may happen at the incorrect time (e.g., before lastPurchaseþ1days) and

cause losses. To trigger the vulnerability, the require condition of function purchase at Line 19 must be satisfied, and consequently, function

createListing must be called before purchase and set burrito:price (at Line 12) to be the proper value (i.e., with range ½0,msg:value�). sFuzz and Con-

tractFuzzer either fail to generate the function sequence or the proper value for argument _startingPrice (which will affect the value of

burrito:price) and thus did not expose the vulnerable contract.

Threats to validity. First, due to limited resources, we are unable to run all contracts from SmartBugs. Despite our sample size being

reasonable, experimenting with all contracts would provide better assurance of the results. Second, identifying dynamic-sized variables at the

bytecode level is a challenge to be addressed in the future. It leads to inaccuracy in counting the number of covered SAPs, and thus, in this work,

we only count those SAPs with respect to static-sized variables. Third, though sFuzz2.0 can improve existing fuzzers by achieving higher code

coverage, the detecting ability may still be limited by the oracles we adopt, this can be further improved by adopting advanced oracles.

F IGURE 9 Code snippet of Dangerous Delegate Call vulnerability found by sFuzz2.0 but not sFuzz or ContractFuzzer.

F IGURE 10 Attacker contract to exploit the Dangerous Delegate Call vulnerability.
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6 | RELATED WORK

sFuzz2.0 is directly related to existing fuzzing approaches to test smart contracts. ContractFuzzer5 applies black-box fuzzing on smart

contracts and defines seven types of vulnerabilities. Echidna7 supports user-defined properties. Harvey8 extends standard grey-box fuzzer

with input prediction and demand-driven transaction sequence fuzzing. sFuzz3 is another grey-box fuzzer which applies a lightweight

multiobjective adaptive strategy towards covering strict conditions. Smartian11 leverage data-flow analysis and taint analysis to effectively and

precisely detect the bugs. ILF29 learns fuzzing policy (i.e., how to append transaction to current sequence). ILF first leverages symbolic

execution to get sequences that maximize the coverage, encodes the transactions into feature vectors, and then feeds the feature vectors to

RNN to learn the fuzzing policies. The effectiveness of ILF relies heavily on the training set. Recent study26,27 shows that the sFuzz is complemen-

tary to existing fuzzers. Confuzzius30 is a hybrid fuzzer that combines fuzzing and symbolic execution. Confuzzius tracks the invocation of SSTORE

and SLOAD and constructs Read-After-Write dependency to generate a meaningful transaction sequence. However, focusing only on the

Read-After-Write constraint is not complete. For example, the order of two consecutive writes is important since the final state depends on the

value of the last write. Compared with the existing fuzzing approaches, sFuzz2.0 takes function order into consideration and achieves better

performance.

Symbolic execution is another approach to detect bugs, these tools first construct CFGs through static analysis, then check whether a path is

feasible through constraint solving. Oyente4 checks four kinds of vulnerabilities. TeEther9 explores critical paths that reach instructions which can

be manipulated by attackers and then generate a sequence of transactions to create an exploit. MAIAN10 is developed to detect three types of

trace vulnerabilities. Osiris31 leverages taint analysis and symbolic execution to detect integer bugs. Mythril13 is a security analysis tool for EVM-

compatible blockchains. Manticore14 is a symbolic execution framework used in Trail of Bits. Solar32 is an adversarial attack synthesizer, which

uses a summary-based symbolic evaluation to reduce the number of instructions to be evaluated. sCompile6 constructs a CFG including inter-

contract function calls, prioritized path by computing critical scores to address path explosion. Smartian11 leverages on grey-box concolic, which

approximate branch constraints with the linear and monotonic relationships. The general problem of symbolic execution is constraint solving is

computationally expensive, especially for smart contracts because the hash function is commonly used and is difficult for SMT solvers like Z3.33 It

has shown that fuzzing and symbolic execution are complementary34,35; thus, sFuzz2.0 can combine with those symbolic execution tools to

improve efficiency.

Our idea is also inspired by concurrent program testing. sFuzz2.0 takes parallel execution of multiple functions into consideration and is

related to coverage-guided concurrency program testing tools. Choudhary et al36 present a tool that generates test cases that are likely to cover

new method pairs. Wang et al18 adopt the memory-access patterns defined in Unicorn25 and propose a novel MAP-Coverage to guide the

searching process. We adopt the idea of coverage-guided fuzzing and propose SAP-Coverage to guide the fuzzing process.

sFuzz2.0 is also related to the formal verification and analysis of smart contracts. Bhargavan et al37 transform contracts into formal lan-

guages F∗. Zeus38 first translates smart contracts into LLVM bit code and then uses abstract interpretation and symbolic model checking to ana-

lyze contracts. SmartCheck39 translates Solidity source code into XML and checks it against XPath patterns. Ethor40 proposes a static Smart

Contract analyzer based on an abstraction of bytecode semantics based on Horn clauses. FairCon41 is designed to verify smart contract fairness.

Clairvoyance12 is a cross-contract and cross-function static analyzer focused on reentrancy bugs. Fröwis and Böhme42 extract call graph to dis-

cover mutable control flows which make the contract less trustworthy and find out that 40% contracts need a third party to trust. Pluto43 is the

F IGURE 11 Code snippet of Timestamp Dependency vulnerability found by sFuzz2.0 but not sFuzz or ContractFuzzer.
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first to build an inter-contract control flow graph (ICFG) to extract semantic information among contract calls, enumerate reachable paths, and

then detect whether there is a vulnerability based on some predefined rules. Chen et al44 identify seven gas-costly patterns and analyze bytecode

to automatically localize these patterns. Securify45 extracts precise semantic information from the code and checks patterns to prove whether the

behavior satisfied the given property. MadMax46 is a static program analysis technique focused on gas-related vulnerabilities. Vandal47 converts

bytecode to semantic logic relations. Mariano et al48 summarize how loops are used using domain-specific language. Grossman et al49 present a

general correctness condition for callback. Differing from the above approaches implemented through static analysis, sFuzz2.0 detects

vulnerabilities dynamically.

7 | CONCLUSION

To conclude, we propose sFuzz2.0 in this work, which extends sFuzz by selectively generating function call sequences guided by patterns

defined in SAP-Coverage. We design two different strategies, that is, the active strategy and the passive strategy, to trigger patterns. The

experiment results show that sFuzz2.0 outperforms state-of-the-art fuzzers by achieving higher code coverage and finding more vulnerabilities.

We further combine the passive and the active strategies sequentially, which achieves the best overall results.
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